| ENGINEERING | DESI | GN | FIL | E | |--------------------|------|----|-----|---| |--------------------|------|----|-----|---| | Funct | ional | | |-------|----------|---| | EDF | 1540 | | | Dogo | 22 of 12 | ^ | # Appendix F Universal Treatment Standards (UTS) 40 CFR 268.48 10/19/2000 Rev. 0 Functional EDF 1540 Page 84 of 120 UNIVERSAL TREATMENT STANDARDS NOTE: NA means not applicable | | | Wastewater Standard | Nonwastewater
standard | |-----------------------------------|------------|-----------------------|--| | Regulated constituent common name | CAS number | Concentration in mg/l | Concentration in mg/kg
unless noted as "mg/l
TCLP" | | Organic Constituents | | | | | Acenaphthylene | 208-96-8 | 0.059 | 3.4 | | Acenaphthene | 83-32-9 | 0.059 | 3.4 | | Acetone | 67-64-1 | 0.28 | 160 | | Acetonitrile | 75-05-8 | 5.6 | 38 | | Acetophenone | 96-86-2 | 0.01 | 9.7 | | 2-Acetylaminofluorene | 53-96-3 | 0.059 | 140 | | Acrolein | 107-02-8 | 0.29 | NA | | Acrylamide | 79-06-1 | 19 | 23 | | Acrylonitrile | 107-13-1 | 0.24 | 84 | | Aldicarb sulfone | 1646-83-4 | 0.056 | 0.28 | | Aldrin | 309-00-2 | 0.021 | 0.066 | | 4-Aminobiphenyl | 92-67-1 | 0.13 | NA | | Aniline | 62-53-3 | 0.81 | 14 | | Anthracene | 120-12-7 | 0.059 | 3.4 | | Aramite | 140-57-8 | 0.36 | NA | | alpha-BHC | 319-84-6 | 0.00014 | 0.066 | | beta-BHC | 319-85-7 | 0.00014 | 0.066 | | delta-BHC | 319-36-8 | 0.023 | 0.066 | | gamma-BHC | 58-89-9 | 0.0017 | 0.066 | 10/19/2000 Rev. 0 Functional _______ EDF __1540 ______ Page 85 of 120 | | | Wastewater Standard | Nonwastewater
standard | |---|------------|-----------------------|--| | Regulated constituent common name | CAS number | Concentration in mg/l | Concentration in mg/kg
unless noted as "mg/l
TCLP" | | Benomyl | 17804-35-2 | 0.056 | 1.4 | | Benzene | 71-43-2 | 0.14 | 10 | | Benz(a)anthracene | 56-55-3 | 0.059 | 3.4 | | Benzal chloride | 98-87-3 | 0.055 | 6 | | Benzo(b)fluoranthene (difficult to distinguish from benzo(k)fluoranthene) | 205-99-2 | 0.11 | 6.8 | | Benzo(k)fluoranthene (difficult to distinguish from benzo(b)fluoranthene) | 207-08-9 | 0.11 | 6.8 | | Benzo(g,h,i)perylene | 191-24-2 | 0.0055 | 1.8 | | Benzo(a)pyrene | 50-32-8 | 0.061 | 3.4 | | Bromodichloromethane | 75-27-4 | 0.35 | 15 | | Bromomethane/Methyl bromide | 74-83-9 | 0.11 | 15 | | 4-Bromophenyl phenyl ether | 101-55-3 | 0.055 | 15 | | n-Butyl alcohol | 71-36-3 | 5.6 | 2.6 | | Butylate | 2008-41-5 | 0.042 | 1.4 | | Butyl benzyl phthalate | 85-68-7 | 0.017 | 28 | | 2-sec-Butyl-4,6-dinitrophenol/Dinoseb | 88-85-7 | 0.066 | 2.5 | | Carbaryl | 63-25-2 | 0.006 | 0.14 | | Carbenzadim | 10605-21-7 | 0.056 | 1.4 | | Carbofuran | 1563-66-2 | 0.006 | 0.14 | | Carbofuran phenol | 1563-38-8 | 0.056 | 1.4 | | Carbon disulfide | 75-15-0 | 3.8 | 4.8 mg/l TCLP | | Carbon tetrachloride | 56-23-5 | 0.057 | 6 | 10/19/2000 Rev. 0 Functional EDF 1540 Page 86 of 120 | | | Wastewater Standard | Nonwastewater
standard | |---|------------|-----------------------|--| | Regulated constituent common name | CAS number | Concentration in mg/l | Concentration in mg/kg
unless noted as "mg/l
TCLP" | | p-Chloroaniline | 106-47-8 | 0.46 | 16 | | Chlorobenzene | 108-90-7 | 0.057 | 6 | | Chlorobenzilate | 510-15-6 | 0.1 | NA | | 2-Chloro-1,3-butadiene | 126-99-8 | 0.057 | 0.28 | | Chlorodibromomethane | 124-48-1 | 0.057 | 15 | | Chloroethane | 75-00-3 | 0.27 | 6 | | bis(2-Chloroethoxy)methane | 111-91-1 | 0.036 | 7.2 | | bis(2-Chloroethyl)ether | 111-44-4 | 0.033 | 6 | | Chloroform | 67-66-3 | 0.046 | 6 | | bis(2-Chloroisopropyl)ether | 39638-32-9 | 0.055 | 7.2 | | p-Chloro-m-cresol | 59-50-7 | 0.018 | 14 | | 2-Chloroethyl vinyl ether | 110-75-8 | 0.062 | NA | | Chloromethane/Methyl chloride | 74-87-3 | 0.19 | 30 | | 2-Chloronaphthalene | 91-58-7 | 0.055 | 5.6 | | 2-Chlorophenol | 95-57-8 | 0.044 | 5.7 | | 3-Chloropropylene | 107-05-1 | 0.036 | 30 | | Chrysene | 218-01-9 | 0.059 | 3.4 | | o-Cresol | 95-48-7 | 0.11 | 5.6 | | m-Cresol (difficult to distinguish from p-cresol) | 108-39-4 | 0.77 | 5.6 | | p-Cresol (difficult to distinguish from m-cresol) | 106-44-5 | 0.77 | 5.6 | | m-Cumenyl methylcarbamate | 64-00-6 | 0.056 | 1.4 | 10/19/2000 Rev. 0 Functional EDF 1540 Page 87 of 120 | | | Wastewater Standard | Nonwastewater
standard | |--------------------------------------|------------|-----------------------|--| | Regulated constituent common name | CAS number | Concentration in mg/l | Concentration in mg/kg
unless noted as "mg/l
TCLP" | | p,p'-DDD | 72-54-8 | 0.023 | 0.087 | | o,p'-DDE | 3424-82-6 | 0.031 | 0.087 | | p,p'-DDE | 72-55-9 | 0.031 | 0.087 | | o,p'-DDT | 789-02-6 | 0.0039 | 0.087 | | p,p'-DDT | 50-29-3 | 0.0039 | 0.087 | | Dibenz(a,h)anthracene | 53-70-3 | 0.055 | 8.2 | | Dibenz(a,e)pyrene | 192-65-4 | 0.061 | NA | | 1,2-Dibromo-3-chloropropane | 96-12-8 | 0.11 | 15 | | 1,2-Dibromoethane/Ethylene dibromide | 106-93-4 | 0.028 | 15 | | Dibromomethane | 74-95-3 | 0.11 | 15 | | m-Dichlorobenzene | 541-73-1 | 0.036 | 6 | | o-Dichlorobenzene | 95-50-1 | 0.088 | 6 | | p-Dichlorobenzene | 106-46-7 | 0.09 | 6 | | Dichlorodifluoromethane | 75-71-8 | 0.23 | 7.2 | | 1,1-Dichloroethane | 75-34-3 | 0.059 | 6 | | 1,2-Dichloroethane | 107-06-2 | 0.21 | 6 | | 1,1-Dichloroethylene | 75-35-4 | 0.025 | 6 | | trans-1,2-Dichloroethylene | 156-60-5 | 0.054 | 30 | | 2,4-Dichlorophenol | 120-83-2 | 0.044 | 14 | | 2,6-Dichlorophenol | 87-65-0 | 0.044 | 14 | | 2,4-Dichlorophenoxyacetic acid/2,4-D | 94-75-7 | 0.72 | 10 | | 1,2-Dichloropropane | 78-87-5 | 0.85 | 18 | 10/19/2000 Rev. 0 Functional EDF 1540 Page 88 of 120 | | | Wastewater Standard | Nonwastewater
standard | |---|------------|-----------------------|--| | Regulated constituent common name | CAS number | Concentration in mg/l | Concentration in mg/kg
unless noted as "mg/l
TCLP" | | Dieldrin | 60-57-1 | 0.017 | 0.13 | | Diethyl phthalate | 84-66-2 | 0.2 | 28 | | p-Dimethylaminoazobenzene | 60-11-7 | 0.13 | NA | | 2-4-Dimethyl phenol | 105-67-9 | 0.036 | 14 | | Dimethyl phthalate | 131-11-3 | 0.047 | 28 | | Di-n-butyl phthalate | 84-74-2 | 0.057 | 28 | | 1,4-Dinitrobenzene | 100-25-4 | 0.32 | 2.3 | | 4,6-Dinitro-o-cresol | 534-52-1 | 0.28 | 160 | | 2,4-Dinitrophenol | 51-28-5 | 0.12 | 160 | | 2,4-Dinitrotoluene | 121-14-2 | 0.32 | 140 | | 2,6-Dinitrotoluene | 606-20-2 | 0.55 | 28 | | Di-n-octyl phthalate | 117-84-0 | 0.017 | 28 | | Di-n-propylnitrosamine | 621-64-7 | 0.4 | 14 | | 1,4-Dioxane | 123-91-1 | 12 | 170 | | Diphenylamine (difficult to distinguish from diphenylnitrosamine) | 122-39-4 | 0.92 | 13 | | Diphenylnitrosamine (difficult to distinguish from diphenylamine) | 86-30-6 | 0.92 | 13 | | 1,2-Diphenylhydrazine | 122-66-7 | 0.087 | NA | | Disulfoton | 298-04-4 | 0.017 | 6.2 | | Dithiocarbamates (total) | NA | 0.028 | 28 | | Endosulfan I | 959-98-8 | 0.023 | 0.066 | | Endosulfan II | 33213-65-9 | 0.029 | 0.13 | 10/19/2000 Rev. 0 Functional EDF <u>1540</u> Page 89 of 120 | | | Wastewater Standard | Nonwastewater
standard | |--|------------|-----------------------|--| | Regulated constituent common name | CAS number | Concentration in mg/l | Concentration in mg/kg
unless noted as "mg/l
TCLP" | | Endrin aldehyde | 7421-93-4 | 0.025 | 0.13 | | EPTC | 759-94-4 | 0.042 | 1.4 | | Ethyl acetate | 141-78-6 | 0.34 | 33 | | Ethyl benzene | 100-41-4 | 0.057 | 10 | | Ethyl cyanide/Propanenitrile | 107-12-0 | 0.24 | 360 | | Ethyl ether | 60-29-7 | 0.12 | 160 | | Ethyl methacrylate | 97-63-2 | 0.14 | 160 | | Ethylene oxide | 75-21-8 | 0.12 | NA | | Famphur | 52-85-7 | 0.017 | 15 | | Fluoranthene | 206-44-0 | 0.068 | 3.4 | | Fluorene | 86-73-7 | 0.059 | 3.4 | | Formetanate hydrochloride | 23422-53-9 | 0.056 | 1.4 | | Heptachlor | 76-44-8 | 0.0012 | 0.066 | | Heptachlor epoxide | 1024-57-3 | 0.016 | 0.066 | | Hexachlorobenzene | 118-74-1 | 0.055 | 10 | | Hexachlorobutadiene | 87-68-3 | 0.055 | 5.6 | | Hexachlorocyclopentadiene | 77-47-4 | 0.057 | 2.4 | | HXCDDS (All Hexachlorodibenzo-p-dioxins) | NA | 0.000063 | 0.001 | | HxCDFs (All
Hexachlorodibenzofurans) | NA | 0.000063 | 0.001 | | Hexachloroethane | 67-72-1 | 0.055 | 30 | | Indeno (1,2,3-c, d) pyrene | 193-39-5 | 0.0055 | 3.4 | 10/19/2000 Rev. 0 Functional EDF 1540 Page 90 of 120 #### Wastewater Standard Nonwastewater standard Regulated constituent common name CAS number Concentration in mg/l Concentration in mg/kg unless noted as "mg/l TCLP" Isodrin 465-73-6 0.021 0.066 2.6 Isosafrole 120-58-1 0.081 Repone 143-50-0 0.0011 0.13 Methacrylonitrile 126-98-7 0.24 84 Methanol 67-56-1 5.6 0.75 mg/l1.5 Methapyrilene 91-80-5 0.081 1.4 Methiocarb 2032-65-7 0.056 16752-77-5 0.028 0.14 Methomyl Methoxychlor 72-43-5 0.25 0.18 3-Methylcholanthrene 56-49-5 0.0055 15 4,4-Methylene bis(2-chloroaniline) 101-14-4 0.5 30 0.089 Methylene chloride 75-09-2 30 Methyl ethyl ketone 78-93-3 0.28 36 Methyl isobutyl ketone 108-10-1 0.14 33 Methyl methacrylate 80-62-6 0.14 160 NA Methyl methanesulfonate 66-27-3 0.018 Methyl parathion 298-00-0 0.014 4.6 0.056 Metolcarb 1129-41-5 1.4 315-18-4 0.056 1.4 Mexacarbate Molinate 2212-67-1 0.042 1.4 91-20-3 0.059 5.6 Naphthalene 91-59-8 0.52 NA 2-Naphthylamine 10/19/2000 Rev. 0 Functional EDF 1540 Page 91 of 120 Wastewater Standard Nonwastewater standard CAS number Concentration in mg/l Concentration in mg/kg Regulated constituent common name unless noted as "mg/l TCLP" Nitrobenzene 98-95-3 0.068 14 5-Nitro-o-toluidine 99-55-8 0.32 28 o-Nitrophenol 88-75-5 0.028 13 p-Nitrophenol 100-02-7 0.12 29 N-Nitrosodiethylamine 55-18-5 0.4 28 N-Nitrosodimethylamine 62-75-9 0.4 2.3 N-Nitroso-di-n-butylamine 924-16-3 0.4 17 N-Nitrosomethylethylamine 10595-95-6 0.4 2.3 N-Nitrosomorpholine 59-89-2 0.4 2.3 N-Nitrosopiperidine 100-75-4 0.013 35 N-Nitrosopyrrolidine 930-SS-2 0.013 35 Oxamyl 23135-22-0 0.056 0.28 Parathion 56-38-2 0.014 4.6 Total PCBs (sum of all PCB isomers, 1336-36-3 0.1 10 or all Aroclors) Pebulate 1114-71-2 0.042 1.4 Pentachlorobenzene 608-93-5 0.055 10 PeCDDs (All Pentachlorodibenzo-p-NA 0.000063 0.001 dioxins) PeCDFs (All NA 0.000035 0.001 Pentachlorodibenzofurans) Pentachloroethane 76-01-7 0.055 6 Pentachloronitrobenzene 82-68-8 0.055 4.8 Pentachlorophenol 87-86-5 0.089 7.4 10/19/2000 Rev. 0 Functional EDF 1540 Page 92 of 120 | | | Wastewater Standard | Nonwastewater
standard | |--|------------|-----------------------|--| | Regulated constituent common name | CAS number | Concentration in mg/l | Concentration in mg/kg
unless noted as "mg/l
TCLP" | | Phenol | 108-95-2 | 0.039 | 6.2 | | Phorate | 298-02-2 | 0.021 | 4.6 | | Phthalic acid | 100-21-0 | 0.055 | 28 | | Phthalic anhydride | 85-44-9 | 0.055 | 28 | | Physostigmine | 57-47-6 | 0.056 | 1.4 | | Physostigmine salicylate | 57-64-7 | 0.056 | 1.4 | | Promecarb | 2631-37-0 | 0.056 | 1.4 | | Pronamide | 23950-58-5 | 0.093 | 1.5 | | Propham | 122-42-9 | 0.056 | 1.4 | | Propoxur | 114-26-1 | 0.056 | 1.4 | | Prosulfocarb | 52888-80-9 | 0.042 | 1.4 | | Pyrene | 129-00-0 | 0.067 | 8.2 | | Pyridine | 110-86-1 | 0.014 | 16 | | Safrole | 94-59-7 | 0.081 | 22 | | Silvex/2,4,5-TP | 93-72-1 | 0.72 | 7.9 | | 1,2,4,5-Tetrachlorobenzene | 95-94-3 | 0.055 | 14 | | TCDDs (All Tetrachlorodibenzo-p-dioxins) | NA | 0.000063 | 0.001 | | TCDFs (All Tetrachlorodibenzofurans) | NA | 0.000063 | 0.001 | | 1,1,1,2-Tetrachloroethane | 630-20-6 | 0.057 | 6 | | 1,1,2,2-Tetrachloroethane | 79-34-5 | 0.057 | 6 | | Tetrachloroethylene | 127-18-4 | 0.056 | 6 | | 2,3,4,6-Tetrachlorophenol | 58-90-2 | 0.03 | 7.4 | 10/19/2000 Rev. 0 Functional EDF 1540 Page 93 of 120 ## Wastewater Standard Nonwastewater standard | | | | standard | |--|------------|-----------------------|--| | Regulated constituent common name | CAS number | Concentration in mg/l | Concentration in mg/kg
unless noted as "mg/l
TCLP" | | Toluene | 108-88-3 | 0.08 | 10 | | Toxaphene | 8001-35-2 | 0.0095 | 2.6 | | Triallate | 2303-17-5 | 0.042 | 1.4 | | Tribromomethane/Bromoform | 75-25-2 | 0.63 | 15 | | 2,4,6-Tribromophenol | 118-79-6 | 0.035 | 7.4 | | 1,2,4-Trichlorobenzene | 120-82-1 | 0.055 | 19 | | 1,1,1-Trichloroethane | 71-55-6 | 0.054 | 6 | | 1,1,2-Trichloroethane | 79-00-5 | 0.054 | 6 | | Trichloroethylene | 79-01-6 | 0.054 | 6 | | Trichlorofluoromethane | 75-69-4 | 0.02 | 30 | | 2,4,5-Trichlorophenol | 9S-95-4 | 0.18 | 7.4 | | 2,4,6-Trichlorophenol | 88-06-2 | 0.035 | 7.4 | | 2,4,5-Trichlorophenoxyacetic acid/2,4,5-T | 93-76-5 | 0.72 | 7.9 | | 1,2,3-Trichloropropane | 96-18-4 | 0.85 | 30 | | 1,1,2-Trichloro-1,2,2-trifluoroethane | 76-13-1 | 0.057 | 30 | | Triethylamine | 121-44-3 | 0.081 | 1.5 | | tris-(2,3-Dibromopropyl) phosphate | 126-72-7 | 0.11 | 0.1 | | Vernolate | 1929-77-7 | 0.042 | 1.4 | | Vinyl chloride | 75-01-4 | 0.27 | 6 | | xylenes-mixed isomers (sum of 0-, m-, and p-xylene concentrations) | 1330-20-7 | 0.32 | 30 | 10/19/2000 Rev. 0 Functional EDF 1540 Page 94 of 120 | Inorganic Constituents | | Wastewater Standard | Nonwastewater
standard | |-------------------------------------|------------|-----------------------|--| | Regulated constituent common name | CAS number | Concentration in mg/l | Concentration in mg/kg
unless noted as "mg/l
TCLP" | | Antimony | 7440-36-0 | 1.9 | 1.15 mg/l TCLP | | Arsenic | 7440-38-2 | | 5 mg/l TCLP | | | | | • | | Barium | 7440-39-3 | | 21 mg/l TCLP | | Beryllium | 7440-41-7 | 0.82 | 1.22 mg/l TCLP | | Cadmium | 7440-43-9 | 0.69 | 0.11 mg/l TCLP | | Chromium (Total) | 7440-47-3 | 2.77 | 0.60 mg/l TCLP | | Cyanides (Total) | 57-12-5 | 1.2 | 590 | | Cyanides (Amenable) | 57-12-5 | 0.86 | 30 | | Fluorides | 16984-48-8 | 35 | NA | | Lead | 7439-92-1 | 0.69 | 0.75 mg/l TCLP | | Mercury - Nonwastewater from Retort | 7439-97-6 | NA | 0.20 mg/l TCLP | | Mercury - All Others | 7439-97-6 | 0.15 | 0.025 mg/l TCLP | | Nickel | 7440-02-0 | 3.98 | 11 mg/l TCLP | | Selenium | 7782-49-2 | 0.82 | 5.7 mg/l TCLP | | Silver | 7440-22-4 | 0.43 | 0.14 mg/l TCLP | | Sulfides | 18496-25-8 | 14 | NA | | Thallium | 7440-28-0 | 1.4 | 0.20 mg/l TCLP | | Vanadium | 7440-62-2 | 4.3 | 1.6 mg/I TCLP | | Zinc | 7440-66-6 | 2.61 | 4.3 mg/l TCLP | | Funct | ional | | |--------|-----------|--| | EDF | 1540 | | | Page (| 95 of 120 | | # Appendix G 10 x Rule for Hazardous Waste 40 CFR 268.49 | Functi | ional | | |--------|----------|--| | EDF | 1540 | | | Page 9 | 6 of 120 | | ## §268.49 Alternative LDR treatment standards for contaminated soil. (a) Applicability. You must comply with LDRs prior to placing soil that exhibits a characteristic of hazardous waste, or exhibited a characteristic of hazardous waste at the time it was generated, into a land disposal unit. The following chart describes whether you must comply with LDRs prior to placing soil contaminated by listed hazardous waste into a land disposal unit: | If LDRs | And if LDRs | And if | Then you | |---|-------------------------------------|---|---------------------------| | Applied to the listed waste when it contaminated the soil* | Apply to the listed waste now | - | Must comply with LDRs | | Didn't apply to the listed waste when it contaminated the soil* | Apply to the listed waste now | The soil is determined to contain the listed waste when the soil is first generated | Must comply with LDRs. | | Didn't apply to the listed waste when it contaminated the soil* | Apply to the listed waste now | The soil is determined not to contain the listed waste when the soil is first generated | Needn't comply with LDRs. | | Didn't apply to the listed waste when it contaminated the soil* | Don't apply to the listed waste now | - | Needn't comply with LDRs. | - *For dates of LDR applicability, see 40 CFR Part 268 Appendix VII. To determine the date any given listed hazardous waste contaminated any given volume of soil, use the last date any given listed hazardous waste was placed into any given land disposal unit or, in the case of an accidental spill, the date of the spill. - (b) Prior to land disposal, contaminated soil identified by paragraph (a) of this section as needing to comply with LDRs must be treated according to the applicable treatment standards specified in paragraph (c) of this section or according to the Universal Treatment Standards specified in 40 CFR 268.48 applicable to the contaminating listed hazardous waste and/or the applicable characteristic of hazardous waste if the soil is characteristic. The treatment standards specified in paragraph (c) of this section and the Universal Treatment Standards may be modified through a treatment variance approved in accordance with 40 CFR 268.44. - (c) Treatment standards for contaminated soils. Prior to land disposal, contaminated soil identified by paragraph (a) of this section as needing to comply with LDRs must be treated 10/19/2000 Rev. 0 Functional EDF 1540 Page 97 of 120 according to all the standards specified in this paragraph or according to the Universal Treatment Standards specified in 40 CFR 268.48. - (1) All soils. Prior to land disposal, all constituents subject to treatment must be treated as follows: - (A) For non-metals, treatment must achieve 90 percent reduction in total constituent concentrations, except as provided by paragraph (c)(1)(C) of this section. - (B) For metals, treatment must achieve 90 percent reduction in constituent concentrations as measured in leachate from the treated media (tested according to the TCLP) or 90 percent reduction in total constituent concentrations (when a metal removal treatment technology is used), except as provided by paragraph (c)(1)(C) of this section. - (C) When treatment of any constituent subject to treatment to a 90 percent reduction standard would result in a concentration less than 10 times the Universal Treatment Standard for that constituent, treatment to achieve constituent concentrations less than 10 times the universal treatment standard is not required. Universal Treatment Standards are identified in 40 CFR 268.48 Table UTS. - (2) Soils that exhibit the characteristic of ignitability, corrosivity or reactivity. In addition to the treatment required by paragraph (c)(1) of this section, prior to land disposal, soils that exhibit the characteristic of ignitability, corrosivity, or reactivity must be treated to eliminate these characteristics. - (3) Soils that contain nonanalyzable constituents. In addition to the treatment requirements of paragraphs (c)(1) and (2) of this section, prior to land disposal, the following treatment is required for soils that contain nonanalyzable constituents: - (A) For soil that contains only analyzable and nonanalyzable organic constituents, treatment of the analyzable organic constituents to the levels specified in paragraphs (c)(1) and (2) of this section; or, - (B) For soil that contains only nonanalyzable constituents, treatment by the method(s) specified in §268.42 for the waste contained in the soil. - (d) Constituents subject to treatment. When applying the soil treatment standards in paragraph (c) of this section, constituents subject to treatment are any constituents listed in 40 CFR 268.48, Table UTS-Universal Treatment Standards that are reasonably expected to be present in any given volume of contaminated soil, except fluoride, selenium, sulfides, vanadium and zinc, and are present at concentrations greater than ten times the universal treatment standard. - (e) Management of treatment residuals. Treatment residuals from treating contaminated soil identified by paragraph (a) of this section as needing to comply with LDRs must be managed as follows: - (1) Soil residuals are subject to the treatment standards of this section; - (2) Non-soil residuals are subject to: - (A) For soils contaminated by listed hazardous waste, the RCRA Subtitle C standards applicable to the listed hazardous waste; and - (B) For soils that exhibit a characteristic of hazardous waste, if the non-soil residual also exhibits a characteristic of hazardous waste, the treatment standards applicable to the characteristic hazardous waste. [63 FR 28751, May 26, 1998, as amended at 64 FR 25417, May 11, 1999] | ENGINEERING DESIGN FIL | Æ | 4 | ì | | |-------------------------------|---|---|---|--| |-------------------------------|---|---|---|--| Functional EDF 1540 Page 98 of 120 10/19/2000 Rev. 0 # Appendix H RCRA Technology Codes 40 CFR 268.42 Functional EDF 1540 Page 99 of 120 ## §268.42 Treatment standards expressed as specified technologies. Note: For the requirements previously found in this section in Table 2-Technology-Based Standards By RCRA Waste Code, and Table 3-Technology-Based Standards for Specific Radioactive Hazardous Mixed Waste, refer to §268.40. (a) The following wastes in the table in §268.40 "Treatment Standards for Hazardous Wastes," for which standards are expressed as a treatment method rather than a concentration level, must be treated using the technology or technologies specified in the table entitled "Technology Codes and Description of Technology-Based Standards" in this section. TABLE 1.-TECHNOLOGY CODES AND DESCRIPTION OF TECHNOLOGY-BASED STANDARDS | TECHNOLOGY
CODE | DESCRIPTION OF TECHNOLOGY-BASED STANDARDS | |--------------------|---| | _A DGAS: | Venting of compressed gases into an absorbing or reacting media (i.e., solid or liquid)-venting can be accomplished through physical release utilizing valves/piping; physical penetration of the container; and/or penetration through detonation. | | AMLGM: | Amalgamation of liquid, elemental mercury contaminated with radioactive materials utilizing inorganic reagents such as copper, zinc, nickel, gold, and sulfur that result in a nonliquid, semisolid amalgam and thereby reducing potential emissions of elemental mercury vapors to the air. | | BIODG: | Biodegradation of organics or non-metallic inorganics (i.e., degradable inorganics that contain the elements of phosphorus, nitrogen, and sulfur) in units operated under either aerobic or anaerobic conditions such that a surrogate compound or indicator parameter has been substantially reduced in concentration in the residuals (e.g., Total Organic Carbon can often be used as an indicator parameter for the biodegradation of many organic constituents that cannot be directly analyzed in wastewater residues). | | CARBN: | Carbon adsorption (granulated or powdered) of non-metallic inorganics, organo-metallics, and/or organic constituents, operated such that a surrogate compound or indicator parameter has not undergone breakthrough (e.g., Total Organic Carbon can often be used as an indicator parameter for the adsorption of many organic constituents that cannot be directly analyzed in wastewater residues). Breakthrough occurs when the carbon has become saturated with the constituent (or indicator parameter) and substantial change in adsorption rate associated with that constituent occurs. | | CHOXD: | Chemical or electrolytic oxidation utilizing the following oxidation reagents (or waste reagents) or combinations of reagents: (1) Hypochlorite (e.g., bleach); (2) chlorine; (3) chlorine dioxide; (4) ozone or UV (ultraviolet light) assisted ozone; (5) peroxides; (6) persulfates; (7) perchlorates; (8) permangantes; and/or (9) other oxidizing reagents of equivalent efficiency, performed in units operated such that a surrogate compound or indicator parameter has been substantially reduced in concentration in the residuals (e.g., Total Organic Carbon can often be used as an indicator parameter for the oxidation of many organic constituents that cannot be directly analyzed in wastewater residues). Chemical oxidation specifically includes what is commonly referred to as alkaline chlorination. | | CHRED: | Chemical reduction utilizing the following reducing reagents (or waste reagents) or combinations of reagents: (1) Sulfur dioxide; (2) sodium, potassium, or alkali salts or sulfites, bisulfites, metabisulfites, and polyethylene glycols (e.g., NaPEG and KPEG); (3) sodium hydrosulfide; (4) ferrous salts; and/or (5) other reducing reagents of equivalent efficiency, performed in units operated such that a surrogate compound or indicator parameter has been substantially reduced in concentration in the residuals (e.g., Total Organic Halogens can often be used as an indicator parameter for the reduction of many halogenated organic constituents that cannot be directly analyzed in wastewater residues). Chemical reduction is commonly used for the reduction of | 10/19/2000 Rev. 0 Functional EDF 1540 Page 100 of 120 | | hexavalent chromium to the trivalent state. | |--------|--| | CMBST: | High temperature organic destruction technologies, such as combustion in incinerators, boilers, or industrial furnaces operated in accordance with the applicable requirements of 40 CFR part 264, subpart O, or 40 CFR part 265, subpart O, or 40 CFR part 266, subpart H, and in other units operated in accordance with applicable technical operating requirements; and certain non-combustive technologies, such as the Catalytic Extraction Process. | | DEACT: | Deactivation to remove the hazardous characteristics of a waste due to its ignitability, corrosivity, and/or reactivity. | | FSUBS: | Fuel substitution in units operated in accordance with applicable technical operating requirements. | | HLVIT: | Vitrification of high level mixed radioactive wastes in units in compliance with all applicable radioactive protection requirements under control of the Nuclear Regulatory Commission. | | IMERC: | Incineration of wastes containing organics and mercury in units operated in accordance with the technical operating requirements of 40 CFR part 264 subpart 0 and part 265 subpart 0. All wastewater and nonwastewater residues derived from this process must then comply with the corresponding treatment standards per waste code with consideration of any applicable subcategories (e.g., High or Low Mercury Subcategories). | | INCIN: | Incineration in units operated in accordance with the technical operating requirements of 40 CFR part 264 subpart 0 and part 265 subpart 0. | | LLEXT: | Liquid-liquid extraction (often referred to as solvent extraction) of organics from liquid wastes into an immiscible solvent for which the hazardous constituents have a greater solvent affinity, resulting in an extract high in organics that must undergo either incineration, reuse as a fuel, or other recovery/reuse and a raffinate (extracted liquid waste) proportionately low in organics that must undergo further treatment as specified in the standard. | | MACRO: | Macroencapsulation with surface coating materials such as polymeric organics (e.g., resins and plastics) or with a jacket of inert inorganic materials to substantially reduce surface exposure to potential leaching media. Macroencapsulation specifically does not include any material that would be classified as a tank or container according to 40 CFR 260.10. | | NEUTR: | Neutralization with the following reagents (or waste reagents) or combinations of reagents: (1) Acids; (2) bases; or (3) water (including wastewaters) resulting in a pH greater than 2 but less than 12.5 as measured in the aqueous residuals. | | NLDBR: | No land disposal based on recycling. | | POLYM: | Formation of complex high-molecular weight solids through polymerization of monomers in high-
TOC D001 non-wastewaters which are chemical components in the manufacture of plastics. | | PRECP: | Chemical precipitation of metals and other inorganics as insoluble precipitates of oxides, hydroxides, carbonates, sulfides, sulfates, chlorides, flourides, or phosphates. The following reagents (or waste reagents) are typically used alone or in combination: (1) Lime (i.e., containing oxides and/or hydroxides of calcium and/or magnesium; (2) caustic (i.e., sodium and/or potassium hydroxides; (3) soda ash (i.e., sodium carbonate); (4) sodium sulfide; (5) ferric sulfate or ferric chloride; (6) alum; or (7) sodium sulfate. Additional floculating, coagulation or similar reagents/processes that enhance sludge dewatering characteristics are not precluded from use. | | RBERY: | Thermal recovery of Beryllium. | | RCGAS: | Recovery/reuse of compressed gases including techniques such as reprocessing of the gases for reuse/resale; filtering/adsorption of impurities; remixing for direct reuse or resale; and use of the gas as a fuel source. | | RCORR: | Recovery of acids or bases utilizing one or more of the following recovery technologies: (1) Distillation (i.e., thermal concentration); (2) ion exchange; (3) resin or solid adsorption; (4) reverse osmosis; and/or (5) incineration for the recovery of acid-Note: this does not preclude the use of other physical phase separation or concentration techniques such as decantation, filtration (including ultrafiltration), and centrifugation, when used in conjunction with the above listed recovery technologies. | | RLEAD: | Thermal recovery of lead in secondary lead smelters. | | RMERC: | Retorting or roasting in a thermal processing unit capable of volatilizing mercury and subsequently condensing the volatilized mercury for recovery. The retorting or roasting unit (or facility) must be subject to one or more of the following: (a) a National Emissions Standard for Hazardous Air Pollutants (NESHAP) for mercury; (b) a Best Available Control Technology (BACT) or a Lowest Achievable Emission Rate (LAER) standard for mercury imposed pursuant to a Prevention of Significant Deterioration (PSD) permit; or (c) a state permit that establishes emission limitations (within meaning of section 302 of the Clean Air Act) for mercury. All wastewater and | 10/19/2000 Rev. 0 Functional EDF 1540 Page 101 of 120 | | nonwastewater residues derived from this process must then comply with the corresponding treatment standards per waste code with consideration of any applicable subcategories (e.g., High or Low Mercury Subcategories). | |--------|--| | RMETL: | Recovery of metals or inorganics utilizing one or more of the following direct physical/removal technologies: (1) Ion exchange; (2) resin or solid (i.e., zeolites) adsorption; (3) reverse osmosis; (4) chelation/solvent extraction; (5) freeze crystalization; (6) ultrafiltration and/or (7) simple precipitation (i.e., crystalization)- <i>Note:</i> This does not preclude the use of other physical phase separation or concentration techniques such as decantation, filtration (including ultrafiltration), and centrifugation, when used in conjunction with the above listed recovery technologies. | | RORGS: | Recovery of organics utilizing one or more of the following technologies: (1) Distillation; (2) thin film evaporation; (3) steam stripping; (4) carbon adsorption; (5) critical fluid extraction; (6) liquid-liquid extraction; (7) precipitation/crystalization (including freeze crystallization); or (8) chemical phase separation techniques (i.e., addition of acids, bases, demulsifiers, or similar chemicals);-Note: this does not preclude the use of other physical phase separation techniques such as a decantation, filtration (including ultrafiltration), and centrifugation, when used in conjunction with the above listed recovery technologies. | | RTHRM: | Thermal recovery of metals or inorganics from nonwastewaters in units identified as industrial furnaces according to 40 CFR 260.10 (1), (6), (7), (11), and (12) under the definition of "industrial furnaces". | | RZINC: | Resmelting in high temperature metal recovery units for the purpose of recovery of zinc. | | STABL: | Stabilization with the following reagents (or waste reagents) or combinations of reagents: (1) Portland cement; or (2) lime/pozzolans (e.g., fly ash and cement kiln dust)-this does not preclude the addition of reagents (e.g., iron salts, silicates, and clays) designed to enhance the set/cure time and/or compressive strength, or to overall reduce the leachability of the metal or inorganic. | | SSTRP: | Steam stripping of organics from liquid wastes utilizing direct application of steam to the wastes operated such that liquid and vapor flow rates, as well as, temperature and pressure ranges have been optimized, monitored, and maintained. These operating parameters are dependent upon the design parameters of the unit such as, the number of separation stages and the internal column design. Thus, resulting in a condensed extract high in organics that must undergo either incineration, reuse as a fuel, or other recovery/reuse and an extracted wastewater that must undergo further treatment as specified in the standard. | | WETOX: | Wet air oxidation performed in units operated such that a surrogate compound or indicator parameter has been substantially reduced in concentration in the residuals (e.g., Total Organic Carbon can often be used as an indicator parameter for the oxidation of many organic constituents that cannot be directly analyzed in wastewater residues). | | WTRRX: | Controlled reaction with water for highly reactive inorganic or organic chemicals with precautionary controls for protection of workers from potential violent reactions as well as precautionary controls for potential emissions of toxic/ignitable levels of gases released during the reaction. | Note 1: When a combination of these technologies (i.e., a treatment train) is specified as a single treatment standard, the order of application is specified in §268.42, Table 2 by indicating the five letter technology code that must be applied first, then the designation "fb." (an abbreviation for "followed by"), then the five letter technology code for the technology that must be applied next, and so on. **Note 2:** When more than one technology (or treatment train) are specified as *alternative* treatment standards, the five letter technology codes (or the treatment trains) are separated by a semicolon (;) with the last technology preceded by the word "OR". This indicates that any one of these BDAT technologies or treatment trains can be used for compliance with the standard. (b) Any person may submit an application to the Administrator demonstrating that an alternative treatment method can achieve a measure of performance equivalent to that achieved by methods specified in paragraphs (a), (c), and (d) of this section for wastes or specified in Table 1 of §268.45 for hazardous debris. The applicant must submit information demonstrating that his treatment method is in compliance with federal, state, and local requirements and is protective of human health and the environment. On the basis of such information and any other 10/19/2000 Rev. 0 Functional EDF 1540 Page 102 of 120 available information, the Administrator may approve the use of the alternative treatment method if he finds that the alternative treatment method provides a measure of performance equivalent to that achieved by methods specified in paragraphs (a), (c), and (d) of this section for wastes or in Table 1 of §268.45 for hazardous debris. Any approval must be stated in writing and may contain such provisions and conditions as the Administrator deems appropriate. The person to whom such approval is issued must comply with all limitations contained in such a determination. - (c) As an alternative to the otherwise applicable subpart D treatment standards, lab packs are eligible for land disposal provided the following requirements are met: - (1) The lab packs comply with the applicable provisions of 40 CFR 264.316 and 40 CFR 265.316; - (2) The lab pack does not contain any of the wastes listed in Appendix IV to part 268; - (3) The lab packs are incinerated in accordance with the requirements of 40 CFR part 264, subpart O or 40 CFR part 265, subpart O; and - (4) Any incinerator residues from lab packs containing D004, D005, D006, D007, D008, D010, and D011 are treated in compliance with the applicable treatment standards specified for such wastes in subpart D of this part. - (d) Radioactive hazardous mixed wastes are subject to the treatment standards in §268.40. Where treatment standards are specified for radioactive mixed wastes in the Table of Treatment Standards, those treatment standards will govern. Where there is no specific treatment standard for radioactive mixed waste, the treatment standard for the hazardous waste (as designated by EPA waste code) applies. Hazardous debris containing radioactive waste is subject to the treatment standards specified in §268.45. [51 FR 40642, Nov. 7, 1986, as amended at 52 FR 25790, July 8, 1987; 55 FR 22692, June 1, 1990; 56 FR 3884, Jan. 31, 1991; 57 FR 8089, Mar. 6, 1992; 57 FR 37273, Aug. 18, 1992; 58 FR 29885, May 24, 1993; 59 FR 31552, June 20, 1994; 59 FR 48103, Sept. 19, 1994; 60 FR 302, Jan. 3, 1995; 61 FR 15654, Apr. 8, 1996; 62 FR 26025, May 12; 1997; 63 FR 28738, May 26, 1998]